Search results for "Science des matériaux"

showing 2 items of 2 documents

NaCl induced corrosion of Ti-6Al-4V alloy at high temperature

2016

International audience; This paper presents a study on the Ti-6Al-4V behaviour in presence of NaCl deposit under dry and moistair environments at 560◦C. The results evidence a detrimental effect of the NaCl deposit with a synergisticeffect in presence of moist air environment. Treatments under dry and moist air with NaCl deposit for600 h, lead respectively to weight gains per unit area 5 and 15 times higher than observed under classicoxidation in dry air. Enhancement of the corrosion phenomenon is attributed to the presence of gaseousmetal chlorides, leading to the establishment of an active corrosion process.

Materials scienceHigh temperature corrosionMatériaux020209 energyGeneral Chemical EngineeringAlloy[ SPI.MAT ] Engineering Sciences [physics]/Materials[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_element02 engineering and technologyengineering.materialScience des matériauxCorrosion[SPI.MAT]Engineering Sciences [physics]/Materials0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTi 6al 4vSEMB. X-ray diffractionTitaniumHigh-temperature corrosionMetallurgyfungitechnology industry and agricultureGeneral Chemistry021001 nanoscience & nanotechnologychemistry13. Climate actionAlloyengineering[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyTitaniumA titanium
researchProduct

Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy

2012

Abstract Laser shock processing is now a recognized surface treatment for improving fatigue or corrosion behaviour of metallic materials through the generation of a compressive stress field. In turn, the analysis of shock wave propagation is of primary importance to predict numerically morphological and mechanical surface modifications. Considering experimental and numerical analyses of shock wave propagation, and surface deformations induced by single impacts, a 2050 aluminum alloy having different microstructures was investigated under laser-shock loading. In a first step, the evolution of shock wave attenuation and elastic precursor amplitude was correctly reproduced by finite element si…

Shock wavematière Condensée: Science des matériaux [Physique]Materials sciencechocMatériaux [Sciences de l'ingénieur]Acoustics and UltrasonicsField (physics)Constitutive equation02 engineering and technology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsResidual stress0103 physical sciencesComposite materialMécanique: Mécanique des matériaux [Sciences de l'ingénieur]010302 applied physicsaluminiumsimulation numérique021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureFinite element methodSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsShock (mechanics)laserAmplitudeSIMULATION0210 nano-technology
researchProduct